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1. Comparing assumptions for simple and multiple linear regression 
The simple and multiple linear regression assumptions (SLR and MLR) are very similar. In fact, the simple 

assumptions are just special cases of the multiple assumptions. Here is a table comparing them: 

 

 Simple Multiple 

S/MLR.1 Population model is linear in parameters: 

� � �� � ��� � � 

Population model is linear in parameters: 

� � �� � ���� � �	�	 �
� ���� � � 

S/MLR.2 ��� � ���� � � ��� � �� is a random sample 

from the population 

����� ��	� � � ��� � ���� � � ��� � �� is a 

random sample from the population 

S/MLR.3 Not all sampled x values ������ �

��� � �� are the same (x not constant) 

No � is constant and there is no perfect 

collinearity among the x variables 

S/MLR.4 No matter what the value of the observed 

variable (x), we expect the unobserved 

variable (u) to be zero: ����� � � 

No matter what the value of the observed 

variables (��� �	� � � ��), we expect the 

unobserved variable (u) to be zero: 

������ �	� � � ��� � � 

S/MLR.5 The “error term” (u) has the same 

variance for any value of the explanatory 

variable: ������� � �	 

The “error term” (u) has the same 

variance for any value of the explanatory 

variables: �������� �	� � � ��� � �	 

 
 

2. Interpreting results of multiple regression 
Interpreting the results from multiple regression is not much different than doing the same with simple 

regression results. Still, it’s important to know how to do it, and it’s a good chance to practice. 

 

Example 1 (from Wooldridge example 3.1): 

Performing a regression of college GPA on high school GPA and ACT score, we get 

 

� !"#$% � �&'( � &)*+�,-"#$ � &��()�$./ 
 

How can we interpret the coefficient on hsGPA? There are a couple of different ways, one that assumes MLR.4 

is met (no omitted variables bias) and one that doesn’t require MLR.4: 

 

Don’t assume 

MLR.4 

 

 

 

Assume 

MLR.4 

 

 

 

 

  



Example 2 (from Wooldridge chapter 4): 

Let’s get some practice with logs. Here is the result of a regression of MLB baseball players’ salaries on years 

in the league, games played per year, career batting average, average home runs per year, and average RBIs per 

year: 

 

012�-�!����% � ��&�( � &�3(��4��- � &��+�5�64-�� � &���(7�8�95 � &��)�,���-�� � &�����8�-�� 
 

Pick one of the estimated parameters and interpret it using a sentence with the word “predicted”: 

Explanatory variable Interpretation 

 

 

 

 

 

 

 

Example 3 (from Wooldridge exercise 3.4): 

Now to look at salaries for a profession more attainable to most of us. Here is the result of a regression of 

median salary for new law school graduates on their LSAT score, median undergraduate GPA of the class, 

number of volumes in the law library, cost of attendance, and rank of the law school (1 being best). Each 

observation is one law school: 

 

012-�!����% � 7&+) � &��):�;<$/ � &')7�"#$ � &�(* 012!�89 !� � &�+7 012� -=� > &��++����? 
 

Interpret the coefficient on libvol (volumes in law library) using a sentence with the word “predicted”: 

 

 

 

 

The coefficient on rank seems pretty small. Does this mean that the rank of a law school doesn’t matter a lot for 

graduates’ salaries? Think in terms of the partial effect, holding the other explanatory variables constant. 

 

3. Omitted variables bias 
We formalized the problem of omitted variables bias (OVB) in lecture by supposing that a true population 

model was: 

� � �� � ���� � �	�	 � � 
but that we specify the model incorrectly: 

� � ��@� ��@�� ���������������� �A  

We then estimate this second (wrong) model using OLS. Why did we leave out �	? Maybe we didn’t realize it 

was important, but more likely, we didn’t have data on �	 so we couldn’t include it. Why the tildes (squiggly 

lines) above the letters? We’re basically acknowledging that if we could estimate each model using OLS, we 

would expect different estimates of the �’s in each equation, so we shouldn’t give them the exact same symbol. 

Note that in the second equation, �	�	 is actually included in �A  (there’s no room for it elsewhere!). 

 

Review your lecture notes for the rest, but in the end you get the result that if �� and �	 are correlated, then 

leaving out �	 will give us a biased (WRONG) estimate for the marginal effect of �� (���@). 

 

The following exercise will try to give some intuition on how to think about OVB and how it is likely to affect 

regression results. 

  



Steps for understanding potential OVB problems in a regression
1
: 

To keep things simple, suppose you’ve estimated a regression of the following form: 

 

�B � �C� � �C��� 
 

Do the following, in order: 

1. Think about which important variables might be missing from the regression. This can be any variable 

that affects the outcome variable (y) but that is not the same as the �� in your regression. Once you think 

of one (you always can), call that omitted variable �	 and proceed to step 2. 

 

2. Think of how �� and �	 are related. Are they positively correlated, or negatively correlated?  

Using your answer, make the following table: 

When ���is LOW → �	 is (LOW) or (HIGH) 

When ���is HIGH → �	 is (LOW) or (HIGH) 

 

3. Now think about how �	 likely affects y. (You’re making a guess about what �	 is in the true population 

model.) Make a little table: 

Ceteris paribus, when �	 is LOW: → y is (LOW) or (HIGH) 

Ceteris paribus, when �	 is HIGH: → y is (LOW) or (HIGH) 

 

4. Here’s where you need to use your imagination. PRETEND that �� has NO effect on y, even if you 

know this is untrue. You’re pretending the true �� is zero. Now use the above two tables to see how you 

expect y to differ between people with high and low values of ��, even if DE had no effect on y: 

���LOW → �	 (LOW) or (HIGH) → y (LOW) or (HIGH) 

�� HIGH → �	 (LOW) or (HIGH) → y (LOW) or (HIGH) 

 

5. Remember that we don’t observe �	, so let’s modify the above table to reflect what we would actually 

observe (still assuming �� is zero). 

���LOW → �	 (HIGH) or (LOW) → y (LOW) or (HIGH) 

�� HIGH → �	 (HIGH) or (LOW) → y (LOW) or (HIGH) 

Now we see the nature of the OVB problem. Even if we pretend ��has no effect on y, we would still see 

some relationship between them in the data. This is due to the omitted variable.  

 

6. Finally, formalize the relationship that we found in the table above. Pretending that the true �� is zero, 

what would our estimate �C� be due to this bias? 

If we found ���LOW→ y LOW, then they are positively related, so �C� F �. 

If we found ���LOW→ y HIGH, then they are negatively related, so �C� G �. 

 

But we had pretended the true effect was 0, so all we’ve done is find the sign of the OVB (we “signed 

the bias”). We are now free to stop pretending and allow �� H �, with the sign of the OVB remaining 

what we found in our thought experiment. That is, if we found ���LOW→ y LOW, then  �C� is too big 

(“biased upward”), and if we found ���LOW→ y HIGH, then  �C� is too small (“biased downward”). 

 

This will become more intuitive with practice, of which we will do a lot. 

                                                           
1
 This discussion is based on Ben Crost, UC Berkeley ARE. 


